70.2.32 problem 40

Internal problem ID [18655]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.2 (Linear equations: Method of integrating factors). Problems at page 54
Problem number : 40
Date solved : Thursday, October 02, 2025 at 03:18:59 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }-6 y&=t^{6} {\mathrm e}^{6 t} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=diff(y(t),t)-6*y(t) = t^6*exp(6*t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = \left (\frac {t^{7}}{7}+c_1 \right ) {\mathrm e}^{6 t} \]
Mathematica. Time used: 0.03 (sec). Leaf size: 22
ode=D[y[t],t]-6*y[t]==t^6*Exp[6*t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {1}{7} e^{6 t} \left (t^7+7 c_1\right ) \end{align*}
Sympy. Time used: 0.135 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t**6*exp(6*t) - 6*y(t) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} + \frac {t^{7}}{7}\right ) e^{6 t} \]