70.2.25 problem 25

Internal problem ID [18648]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.2 (Linear equations: Method of integrating factors). Problems at page 54
Problem number : 25
Date solved : Thursday, October 02, 2025 at 03:18:05 PM
CAS classification : [_linear]

\begin{align*} 2 y+t y^{\prime }&=\frac {\sin \left (t \right )}{t} \end{align*}

With initial conditions

\begin{align*} y \left (-\frac {\pi }{2}\right )&=a \\ \end{align*}
Maple. Time used: 0.032 (sec). Leaf size: 19
ode:=t*diff(y(t),t)+2*y(t) = sin(t)/t; 
ic:=[y(-1/2*Pi) = a]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = \frac {-\cos \left (t \right )+\frac {a \,\pi ^{2}}{4}}{t^{2}} \]
Mathematica. Time used: 0.053 (sec). Leaf size: 34
ode=t*D[y[t],t]+2*y[t]==Sin[t]/t; 
ic={y[-Pi/2]==a}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {4 \int _{-\frac {\pi }{2}}^t\sin (K[1])dK[1]+\pi ^2 a}{4 t^2} \end{align*}
Sympy. Time used: 0.228 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*Derivative(y(t), t) + 2*y(t) - sin(t)/t,0) 
ics = {y(-pi/2): a} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {\frac {\pi ^{2} a}{4} - \cos {\left (t \right )}}{t^{2}} \]