70.2.16 problem 16

Internal problem ID [18639]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.2 (Linear equations: Method of integrating factors). Problems at page 54
Problem number : 16
Date solved : Thursday, October 02, 2025 at 03:17:52 PM
CAS classification : [_linear]

\begin{align*} \frac {2 y}{t}+y^{\prime }&=\frac {\cos \left (t \right )}{t^{2}} \end{align*}

With initial conditions

\begin{align*} y \left (\pi \right )&=0 \\ \end{align*}
Maple. Time used: 0.023 (sec). Leaf size: 10
ode:=diff(y(t),t)+2*y(t)/t = cos(t)/t^2; 
ic:=[y(Pi) = 0]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = \frac {\sin \left (t \right )}{t^{2}} \]
Mathematica. Time used: 0.025 (sec). Leaf size: 19
ode=D[y[t],t]+2/t*y[t]==Cos[t]/t^2; 
ic={y[Pi]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {\int _{\pi }^t\cos (K[1])dK[1]}{t^2} \end{align*}
Sympy. Time used: 0.220 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(Derivative(y(t), t) + 2*y(t)/t - cos(t)/t**2,0) 
ics = {y(pi): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {\sin {\left (t \right )}}{t^{2}} \]