70.2.14 problem 14

Internal problem ID [18637]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.2 (Linear equations: Method of integrating factors). Problems at page 54
Problem number : 14
Date solved : Thursday, October 02, 2025 at 03:17:48 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+2 y&=t \,{\mathrm e}^{-2 t} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \\ \end{align*}
Maple. Time used: 0.027 (sec). Leaf size: 15
ode:=diff(y(t),t)+2*y(t) = t*exp(-2*t); 
ic:=[y(1) = 0]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = \frac {\left (t^{2}-1\right ) {\mathrm e}^{-2 t}}{2} \]
Mathematica. Time used: 0.038 (sec). Leaf size: 19
ode=D[y[t],t]+2*y[t]==t*Exp[-2*t]; 
ic={y[1]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {1}{2} e^{-2 t} \left (t^2-1\right ) \end{align*}
Sympy. Time used: 0.101 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t*exp(-2*t) + 2*y(t) + Derivative(y(t), t),0) 
ics = {y(1): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (\frac {t^{2}}{2} - \frac {1}{2}\right ) e^{- 2 t} \]