Internal
problem
ID
[704]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.5.
Linear
first
order
equations.
Page
56
Problem
number
:
1
Date
solved
:
Tuesday, September 30, 2025 at 04:06:37 AM
CAS
classification
:
[_quadrature]
With initial conditions
ode:=y(x)+diff(y(x),x) = 2; ic:=[y(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=y[x]+D[y[x],x] == 2; ic=y[0]==0; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) + Derivative(y(x), x) - 2,0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)