Internal
problem
ID
[17874]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Chapter
4
review
exercises,
page
219
Problem
number
:
36
Date
solved
:
Thursday, October 02, 2025 at 02:29:05 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(t),t),t),t),t)+6*diff(diff(diff(y(t),t),t),t)+18*diff(diff(y(t),t),t)+30*diff(y(t),t)+25*y(t) = exp(-t)*cos(2*t)+exp(-2*t)*sin(t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,4}]+6*D[ y[t],{t,3}]+18*D[y[t],{t,2}]+30*D[y[t],t]+25*y[t]==Exp[-t]*Cos[2*t]+Exp[-2*t]*Sin[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(25*y(t) + 30*Derivative(y(t), t) + 18*Derivative(y(t), (t, 2)) + 6*Derivative(y(t), (t, 3)) + Derivative(y(t), (t, 4)) - exp(-t)*cos(2*t) - exp(-2*t)*sin(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)