68.15.17 problem 17

Internal problem ID [17743]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number : 17
Date solved : Thursday, October 02, 2025 at 02:27:34 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x y^{\prime }-2 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=x^3*diff(diff(diff(y(x),x),x),x)+2*x*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left (c_1 +c_2 \sin \left (\ln \left (x \right )\right )+c_3 \cos \left (\ln \left (x \right )\right )\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 22
ode=x^3*D[y[x],{x,3}]+2*x*D[y[x],x]-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x (c_2 \cos (\log (x))+c_1 \sin (\log (x))+c_3) \end{align*}
Sympy. Time used: 0.118 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) + 2*x*Derivative(y(x), x) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} + C_{2} \sin {\left (\log {\left (x \right )} \right )} + C_{3} \cos {\left (\log {\left (x \right )} \right )}\right ) \]