Internal
problem
ID
[16973]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
34.
Power
series
solutions
II:
Generalization
and
theory.
Additional
Exercises.
page
678
Problem
number
:
34.5
(f)
Date
solved
:
Thursday, October 02, 2025 at 01:41:17 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=exp(3*x)*diff(diff(y(x),x),x)+sin(x)*diff(y(x),x)+2/(x^2+4)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=Exp[3*x]*D[y[x],{x,2}]+Sin[x]*D[y[x],x]+2/(x^2+4)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(exp(3*x)*Derivative(y(x), (x, 2)) + sin(x)*Derivative(y(x), x) + 2*y(x)/(x**2 + 4),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)