67.1.3 problem 2.2 (c)

Internal problem ID [16268]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 2. Integration and differential equations. Additional exercises. page 32
Problem number : 2.2 (c)
Date solved : Thursday, October 02, 2025 at 10:45:08 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+4 y&={\mathrm e}^{2 x} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(y(x),x)+4*y(x) = exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{2 x}}{6}+{\mathrm e}^{-4 x} c_1 \]
Mathematica. Time used: 0.031 (sec). Leaf size: 23
ode=D[y[x],x]+4*y[x]==Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{2 x}}{6}+c_1 e^{-4 x} \end{align*}
Sympy. Time used: 0.078 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) - exp(2*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 4 x} + \frac {e^{2 x}}{6} \]