Internal
problem
ID
[16261]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
6.
Laplace
transform.
Section
6.6.
page
624
Problem
number
:
4
Date
solved
:
Thursday, October 02, 2025 at 10:44:22 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+diff(y(t),t)+3*y(t) = (1-Heaviside(t-2))*exp(-1/10*t+1/5)*sin(t-2); ic:=[y(0) = 1, D(y)(0) = 2]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+D[y[t],t]+8*y[t]==(1-UnitStep[t-2])*Exp[-(t-2)/10]*Sin[t-2]; ic={y[0]==1,Derivative[1][y][0] ==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((Heaviside(t - 2) - 1)*exp(1/5 - t/10)*sin(t - 2) + 3*y(t) + Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 2} dsolve(ode,func=y(t),ics=ics)
Timed Out