66.8.9 problem 22

Internal problem ID [16060]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number : 22
Date solved : Thursday, October 02, 2025 at 10:40:29 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=y t \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(t),t) = t*y(t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{\frac {t^{2}}{2}} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 22
ode=D[y[t],t]==t*y[t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to c_1 e^{\frac {t^2}{2}}\\ y(t)&\to 0 \end{align*}
Sympy. Time used: 0.148 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t*y(t) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} e^{\frac {t^{2}}{2}} \]