66.2.24 problem 19 a(i)

Internal problem ID [15946]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number : 19 a(i)
Date solved : Thursday, October 02, 2025 at 10:31:32 AM
CAS classification : [_quadrature]

\begin{align*} \theta ^{\prime }&=\frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 21
ode:=diff(theta(t),t) = 9/10-11/10*cos(theta(t)); 
dsolve(ode,theta(t), singsol=all);
 
\[ \theta = -2 \arctan \left (\frac {\tanh \left (\frac {\left (t +c_1 \right ) \sqrt {10}}{10}\right ) \sqrt {10}}{10}\right ) \]
Mathematica. Time used: 0.121 (sec). Leaf size: 50
ode=D[ theta[t],t]==1-Cos[theta[t]]+(1+Cos[theta[t]])*(-1/10); 
ic={}; 
DSolve[{ode,ic},theta[t],t,IncludeSingularSolutions->True]
 
\begin{align*} \theta (t)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{11 \cos (K[1])-9}dK[1]\&\right ]\left [-\frac {t}{10}+c_1\right ]\\ \theta (t)&\to -\arccos \left (\frac {9}{11}\right )\\ \theta (t)&\to \arccos \left (\frac {9}{11}\right ) \end{align*}
Sympy. Time used: 2.505 (sec). Leaf size: 46
from sympy import * 
t = symbols("t") 
theta = Function("theta") 
ode = Eq(11*cos(theta(t))/10 + Derivative(theta(t), t) - 9/10,0) 
ics = {} 
dsolve(ode,func=theta(t),ics=ics)
 
\[ t - \frac {\sqrt {10} \log {\left (\tan {\left (\frac {\theta {\left (t \right )}}{2} \right )} - \frac {\sqrt {10}}{10} \right )}}{2} + \frac {\sqrt {10} \log {\left (\tan {\left (\frac {\theta {\left (t \right )}}{2} \right )} + \frac {\sqrt {10}}{10} \right )}}{2} = C_{1} \]