Internal
problem
ID
[15802]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
4.
N-th
Order
Linear
Differential
Equations.
Exercises
4.4,
page
218
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 10:28:10 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(x),x),x),x)+diff(diff(y(x),x),x)-diff(y(x),x)-y(x) = (2*x^2+4*x+8)*cos(x)+(6*x^2+8*x+12)*sin(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]+D[y[x],{x,2}]-D[y[x],x]-y[x]==(2*x^2+4*x+8)*Cos[x]+(6*x^2+8*x+12)*Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*x**2 - 4*x - 8)*cos(x) - (6*x**2 + 8*x + 12)*sin(x) - y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)