Internal
problem
ID
[15087]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
19,
CauchyEuler
equations.
Exercises
page
174
Problem
number
:
19.2
Date
solved
:
Thursday, October 02, 2025 at 10:02:53 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=a*diff(diff(y(z),z),z)+(-a+b)*diff(y(z),z)+c*y(z) = 0; dsolve(ode,y(z), singsol=all);
ode=a*D[y[z],{z,2}]+(b-a)*D[y[z],z]+c*y[z]==0; ic={}; DSolve[{ode,ic},y[z],z,IncludeSingularSolutions->True]
from sympy import * z = symbols("z") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(a*Derivative(y(z), (z, 2)) + c*y(z) + (-a + b)*Derivative(y(z), z),0) ics = {} dsolve(ode,func=y(z),ics=ics)