59.10.1 problem 17.1

Internal problem ID [15065]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 17, Reduction of order. Exercises page 162
Problem number : 17.1
Date solved : Thursday, October 02, 2025 at 10:02:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t^{2} y^{\prime \prime }-\left (t^{2}+2 t \right ) y^{\prime }+\left (t +2\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=t \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 12
ode:=t^2*diff(diff(y(t),t),t)-(t^2+2*t)*diff(y(t),t)+(t+2)*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = t \left ({\mathrm e}^{t} c_2 +c_1 \right ) \]
Mathematica. Time used: 0.014 (sec). Leaf size: 16
ode=t^2*D[y[t],{t,2}]-(t^2+2*t)*D[y[t],t]+(t+2)*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to t \left (c_2 e^t+c_1\right ) \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*Derivative(y(t), (t, 2)) + (t + 2)*y(t) - (t**2 + 2*t)*Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
False