59.3.8 problem 8.4

Internal problem ID [15007]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 8, Separable equations. Exercises page 72
Problem number : 8.4
Date solved : Thursday, October 02, 2025 at 09:58:28 AM
CAS classification : [_separable]

\begin{align*} i^{\prime }&=p \left (t \right ) i \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 11
ode:=diff(i(t),t) = p(t)*i(t); 
dsolve(ode,i(t), singsol=all);
 
\[ i = c_1 \,{\mathrm e}^{\int p \left (t \right )d t} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 25
ode=D[i[t],t]==p[t]*i[t]; 
ic={}; 
DSolve[{ode,ic},i[t],t,IncludeSingularSolutions->True]
 
\begin{align*} i(t)&\to c_1 \exp \left (\int _1^tp(K[1])dK[1]\right )\\ i(t)&\to 0 \end{align*}
Sympy. Time used: 0.179 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
i = Function("i") 
p = Function("p") 
ode = Eq(-i(t)*p(t) + Derivative(i(t), t),0) 
ics = {} 
dsolve(ode,func=i(t),ics=ics)
 
\[ i{\left (t \right )} = C_{1} e^{\int p{\left (t \right )}\, dt} \]