59.3.5 problem 8.1 (v)

Internal problem ID [15004]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 8, Separable equations. Exercises page 72
Problem number : 8.1 (v)
Date solved : Thursday, October 02, 2025 at 09:58:24 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=y^{2} {\mathrm e}^{-t^{2}} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 18
ode:=diff(y(t),t) = exp(-t^2)*y(t)^2; 
dsolve(ode,y(t), singsol=all);
 
\[ y = -\frac {2}{\sqrt {\pi }\, \operatorname {erf}\left (t \right )-2 c_1} \]
Mathematica. Time used: 0.134 (sec). Leaf size: 27
ode=D[y[t],t]==Exp[-t^2]*y[t]^2; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -\frac {2}{\sqrt {\pi } \text {erf}(t)+2 c_1}\\ y(t)&\to 0 \end{align*}
Sympy. Time used: 0.131 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t)**2*exp(-t**2) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - \frac {2}{C_{1} + \sqrt {\pi } \operatorname {erf}{\left (t \right )}} \]