57.9.12 problem 1(L)

Internal problem ID [14420]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110
Problem number : 1(L)
Date solved : Thursday, October 02, 2025 at 09:36:59 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=-6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \end{align*}
Maple. Time used: 0.079 (sec). Leaf size: 47
ode:=diff(diff(x(t),t),t)+diff(x(t),t)+x(t) = -6+2*exp(2*t)*sin(t); 
dsolve(ode,x(t), singsol=all);
 
\[ x = {\mathrm e}^{-\frac {t}{2}} \sin \left (\frac {\sqrt {3}\, t}{2}\right ) c_2 +{\mathrm e}^{-\frac {t}{2}} \cos \left (\frac {\sqrt {3}\, t}{2}\right ) c_1 -6+\frac {2 \,{\mathrm e}^{2 t} \left (6 \sin \left (t \right )-5 \cos \left (t \right )\right )}{61} \]
Mathematica. Time used: 0.558 (sec). Leaf size: 71
ode=D[x[t],{t,2}]+D[x[t],t]+x[t]==-6+2*Exp[2*t]*Sin[t]; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {12}{61} e^{2 t} \sin (t)-\frac {10}{61} e^{2 t} \cos (t)+c_2 e^{-t/2} \cos \left (\frac {\sqrt {3} t}{2}\right )+c_1 e^{-t/2} \sin \left (\frac {\sqrt {3} t}{2}\right )-6 \end{align*}
Sympy. Time used: 0.180 (sec). Leaf size: 51
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(x(t) - 2*exp(2*t)*sin(t) + Derivative(x(t), t) + Derivative(x(t), (t, 2)) + 6,0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \left (C_{1} \sin {\left (\frac {\sqrt {3} t}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} t}{2} \right )}\right ) e^{- \frac {t}{2}} + \frac {2 \left (6 \sin {\left (t \right )} - 5 \cos {\left (t \right )}\right ) e^{2 t}}{61} - 6 \]