56.31.3 problem Ex 3

Internal problem ID [14256]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter VIII, Linear differential equations of the second order. Article 54. Change of independent variable. Page 127
Problem number : Ex 3
Date solved : Thursday, October 02, 2025 at 09:27:18 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y&=0 \end{align*}
Maple. Time used: 0.029 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)+tan(x)*diff(y(x),x)+cos(x)^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (\sin \left (x \right )\right )+c_2 \cos \left (\sin \left (x \right )\right ) \]
Mathematica. Time used: 0.041 (sec). Leaf size: 18
ode=D[y[x],{x,2}]+Tan[x]*D[y[x],x]+Cos[x]^2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 \sin (\sin (x))+c_1 \cos (\sin (x)) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*cos(x)**2 + tan(x)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False