55.35.41 problem 41
Internal
problem
ID
[14078]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.3-1.
Equations
with
exponential
functions
Problem
number
:
41
Date
solved
:
Friday, October 03, 2025 at 07:24:31 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+\left (n \,{\mathrm e}^{\lambda x}+m \right ) y&=0 \end{align*}
✓ Maple. Time used: 0.295 (sec). Leaf size: 296
ode:=(exp(lambda*x)*a+b)*diff(diff(y(x),x),x)+(c*exp(lambda*x)+d)*diff(y(x),x)+(n*exp(lambda*x)+m)*y(x) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = {\mathrm e}^{-\frac {x d}{2 b}} \left (c_1 \,{\mathrm e}^{\frac {x \sqrt {-4 b m +d^{2}}}{2 b}} \operatorname {hypergeom}\left (\left [-\frac {\sqrt {-4 a n +c^{2}}\, b -\sqrt {-4 b m +d^{2}}\, a +a d -b c}{2 b \lambda a}, \frac {-a d +b c +\sqrt {-4 b m +d^{2}}\, a +\sqrt {-4 a n +c^{2}}\, b}{2 b \lambda a}\right ], \left [\frac {b \lambda +\sqrt {-4 b m +d^{2}}}{b \lambda }\right ], -\frac {a \,{\mathrm e}^{\lambda x}}{b}\right )+c_2 \,{\mathrm e}^{-\frac {x \sqrt {-4 b m +d^{2}}}{2 b}} \operatorname {hypergeom}\left (\left [-\frac {\sqrt {-4 a n +c^{2}}\, b +\sqrt {-4 b m +d^{2}}\, a +a d -b c}{2 b \lambda a}, \frac {-a d +b c -\sqrt {-4 b m +d^{2}}\, a +\sqrt {-4 a n +c^{2}}\, b}{2 b \lambda a}\right ], \left [\frac {b \lambda -\sqrt {-4 b m +d^{2}}}{b \lambda }\right ], -\frac {a \,{\mathrm e}^{\lambda x}}{b}\right )\right )
\]
✓ Mathematica. Time used: 0.187 (sec). Leaf size: 476
ode=(a*Exp[\[Lambda]*x]+b)*D[y[x],{x,2}]+(c*Exp[\[Lambda]*x]+d)*D[y[x],x]+(n*Exp[\[Lambda]*x]+m)*y[x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to b^{\frac {d-\sqrt {d^2-4 b m}}{2 b \lambda }} a^{-\frac {\sqrt {d^2-4 b m}+d}{2 b \lambda }} \left (e^{\lambda x}\right )^{-\frac {\sqrt {d^2-4 b m}+d}{2 b \lambda }} \left (c_2 a^{\frac {\sqrt {d^2-4 b m}}{b \lambda }} \left (e^{\lambda x}\right )^{\frac {\sqrt {d^2-4 b m}}{b \lambda }} \operatorname {Hypergeometric2F1}\left (\frac {-d \lambda a+\sqrt {\left (d^2-4 b m\right ) \lambda ^2} a+b c \lambda -b \sqrt {\left (c^2-4 a n\right ) \lambda ^2}}{2 a b \lambda ^2},\frac {-d \lambda a+\sqrt {\left (d^2-4 b m\right ) \lambda ^2} a+b c \lambda +b \sqrt {\left (c^2-4 a n\right ) \lambda ^2}}{2 a b \lambda ^2},\frac {\sqrt {\left (d^2-4 b m\right ) \lambda ^2}}{b \lambda ^2}+1,-\frac {a e^{x \lambda }}{b}\right )+c_1 b^{\frac {\sqrt {d^2-4 b m}}{b \lambda }} \operatorname {Hypergeometric2F1}\left (-\frac {a \left (d \lambda +\sqrt {\left (d^2-4 b m\right ) \lambda ^2}\right )+b \left (\sqrt {\left (c^2-4 a n\right ) \lambda ^2}-c \lambda \right )}{2 a b \lambda ^2},\frac {b \left (c \lambda +\sqrt {\left (c^2-4 a n\right ) \lambda ^2}\right )-a \left (d \lambda +\sqrt {\left (d^2-4 b m\right ) \lambda ^2}\right )}{2 a b \lambda ^2},1-\frac {\sqrt {\left (d^2-4 b m\right ) \lambda ^2}}{b \lambda ^2},-\frac {a e^{x \lambda }}{b}\right )\right ) \end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
a = symbols("a")
b = symbols("b")
c = symbols("c")
d = symbols("d")
n = symbols("n")
m = symbols("m")
lambda_ = symbols("lambda_")
y = Function("y")
ode = Eq((m + n*exp(lambda_*x))*y(x) + (a*exp(lambda_*x) + b)*Derivative(y(x), (x, 2)) + (c*exp(lambda_*x) + d)*Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
False