55.32.28 problem 209

Internal problem ID [13982]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-6
Problem number : 209
Date solved : Friday, October 03, 2025 at 07:10:08 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\lambda ^{3}+x^{3}\right ) y^{\prime }-\left (\lambda ^{2}-\lambda x +x^{2}\right ) y&=0 \end{align*}
Maple. Time used: 0.144 (sec). Leaf size: 76
ode:=(a*x^3+b*x^2+c*x+d)*diff(diff(y(x),x),x)+(lambda^3+x^3)*diff(y(x),x)-(lambda^2-lambda*x+x^2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\lambda +x \right ) \left (c_2 \int {\mathrm e}^{-\int \frac {x^{4}+\left (2 a +\lambda \right ) x^{3}+2 b \,x^{2}+\left (\lambda ^{3}+2 c \right ) x +\lambda ^{4}+2 d}{\left (a \,x^{3}+b \,x^{2}+c x +d \right ) \left (\lambda +x \right )}d x}d x +c_1 \right ) \]
Mathematica. Time used: 1.294 (sec). Leaf size: 240
ode=(a*x^3+b*x^2+c*x+d)*D[y[x],{x,2}]+(x^3+\[Lambda]^3)*D[y[x],x]-(x^2-\[Lambda]*x+\[Lambda]^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 (\lambda +x) \int _1^x\exp \left (-\frac {\lambda +K[1]+2 a \log (\lambda +K[1])+\text {RootSum}\left [-a \lambda ^3+b \lambda ^2+3 a \text {$\#$1} \lambda ^2-3 a \text {$\#$1}^2 \lambda -c \lambda -2 b \text {$\#$1} \lambda +a \text {$\#$1}^3+b \text {$\#$1}^2+d+c \text {$\#$1}\&,\frac {a \log (\lambda +K[1]-\text {$\#$1}) \lambda ^3-b \log (\lambda +K[1]-\text {$\#$1}) \lambda ^2+c \log (\lambda +K[1]-\text {$\#$1}) \lambda +2 b \log (\lambda +K[1]-\text {$\#$1}) \text {$\#$1} \lambda -b \log (\lambda +K[1]-\text {$\#$1}) \text {$\#$1}^2-d \log (\lambda +K[1]-\text {$\#$1})-c \log (\lambda +K[1]-\text {$\#$1}) \text {$\#$1}}{3 a \lambda ^2-2 b \lambda -6 a \text {$\#$1} \lambda +3 a \text {$\#$1}^2+c+2 b \text {$\#$1}}\&\right ]}{a}\right )dK[1]}{\lambda }+\frac {c_1 (\lambda +x)}{\lambda } \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
d = symbols("d") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq((lambda_**3 + x**3)*Derivative(y(x), x) - (lambda_**2 - lambda_*x + x**2)*y(x) + (a*x**3 + b*x**2 + c*x + d)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False