55.31.17 problem 165

Internal problem ID [13938]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-5
Problem number : 165
Date solved : Thursday, October 02, 2025 at 08:12:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y&=0 \end{align*}
Maple. Time used: 0.036 (sec). Leaf size: 31
ode:=(a^2+x^2)*diff(diff(y(x),x),x)+2*b*x*diff(y(x),x)+b*(b-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \left (-i x +a \right )^{-b +1}+c_2 \left (i x +a \right )^{-b +1} \]
Mathematica. Time used: 0.267 (sec). Leaf size: 101
ode=(x^2+a^2)*D[y[x],{x,2}]+2*b*x*D[y[x],x]+b*(b-1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\left (a^2+x^2\right )^{\frac {1}{2}-\frac {b}{2}} e^{-i \sqrt {(b-1)^2} \arctan \left (\frac {a}{x}\right )} \left (i c_2 e^{2 i \sqrt {(b-1)^2} \arctan \left (\frac {a}{x}\right )}+2 a \sqrt {(b-1)^2} c_1\right )}{2 a \sqrt {(b-1)^2}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(2*b*x*Derivative(y(x), x) + b*(b - 1)*y(x) + (a**2 + x**2)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False