Internal
problem
ID
[13443]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-5.
Equations
containing
combinations
of
trigonometric
functions.
Problem
number
:
49
Date
solved
:
Wednesday, October 01, 2025 at 12:28:06 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = lambda*sin(lambda*x)*y(x)^2+a*cos(lambda*x)^n*y(x)-a*cos(lambda*x)^(n-1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==\[Lambda]*Sin[\[Lambda]*x]*y[x]^2+a*Cos[\[Lambda]*x]^n*y[x]-a*Cos[\[Lambda]*x]^(n-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") n = symbols("n") y = Function("y") ode = Eq(-a*y(x)*cos(lambda_*x)**n + a*cos(lambda_*x)**(n - 1) - lambda_*y(x)**2*sin(lambda_*x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*y(x)*cos(lambda_*x)**n + a*cos(lambda_*x)**(n - 1) - lambda_*y(x)**2*sin(lambda_*x) + Derivative(y(x), x) cannot be solved by the lie group method