Internal
problem
ID
[13279]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
53
Date
solved
:
Wednesday, October 01, 2025 at 05:10:54 AM
CAS
classification
:
[_rational, _Riccati]
ode:=x^2*diff(y(x),x) = c*x^2*y(x)^2+(a*x^n+b)*x*y(x)+alpha*x^(2*n)+beta*x^n+gamma; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]==c*x^2*y[x]^2+(a*x^n+b)*x*y[x]+\[Alpha]*x^(2*n)+\[Beta]*x^n+\[Gamma]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") b = symbols("b") c = symbols("c") n = symbols("n") y = Function("y") ode = Eq(-Alpha*x**(2*n) - BETA*x**n - Gamma - c*x**2*y(x)**2 + x**2*Derivative(y(x), x) - x*(a*x**n + b)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (Alpha*x**(2*n) + BETA*x**n + Gamma + c*x**2*y(x)**2 + x*(a*x**n + b)*y(x))/x**2 cannot be solved by the factorable group method