Internal
problem
ID
[12833]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1574
Date
solved
:
Friday, October 03, 2025 at 03:47:32 AM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)*sin(x)^4+2*diff(diff(diff(y(x),x),x),x)*sin(x)^3*cos(x)+diff(diff(y(x),x),x)*sin(x)^2*(sin(x)^2-3)+diff(y(x),x)*sin(x)*cos(x)*(2*sin(x)^2+3)+(a^4*sin(x)^4-3)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-3 + a^4*Sin[x]^4)*y[x] + Cos[x]*Sin[x]*(3 + 2*Sin[x]^2)*D[y[x],x] + Sin[x]^2*(-3 + Sin[x]^2)*D[y[x],{x,2}] + 2*Cos[x]*Sin[x]^3*Derivative[3][y][x] + Sin[x]^4*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq((a**4*sin(x)**4 - 3)*y(x) + (sin(x)**2 - 3)*sin(x)**2*Derivative(y(x), (x, 2)) + (2*sin(x)**2 + 3)*sin(x)*cos(x)*Derivative(y(x), x) + sin(x)**4*Derivative(y(x), (x, 4)) + 2*sin(x)**3*cos(x)*Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a**4*(1 - cos(2*x))**2*y(x) - (1 - cos(2*x))**2*Derivative(y(x), (x, 2)) - (1 - cos(2*x))**2*Derivative(y(x), (x, 4)) + 12*y(x) - 2*sin(2*x)*Derivative(y(x), (x, 3)) + sin(4*x)*Derivative(y(x), (x, 3)) - 6*cos(2*x)*Derivative(y(x), (x, 2)) + 6*Derivative(y(x), (x, 2)))/(8*sin(2*x) - sin(4*x)) cannot be solved by the factorable group method