Internal
problem
ID
[12683]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1405
Date
solved
:
Wednesday, October 01, 2025 at 02:19:44 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = (2*x^2+1)/x^3*diff(y(x),x)-1/4*(a*x^4+10*x^2+1)/x^6*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -1/4*((1 + 10*x^2 + a*x^4)*y[x])/x^6 + ((1 + 2*x^2)*D[y[x],x])/x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - (2*x**2 + 1)*Derivative(y(x), x)/x**3 + (a*x**4 + 10*x**2 + 1)*y(x)/(4*x**6),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*x**4*y(x) + 4*x**6*Derivative(y(x), (x, 2)) + 10*x**2*y(x) + y(x))/(8*x**5 + 4*x**3) cannot be solved by the factorable group method