Internal
problem
ID
[12645]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1367
Date
solved
:
Friday, October 03, 2025 at 03:45:31 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -2/(x^2+1)*x*diff(y(x),x)-(a^2*(x^2+1)^2-n*(n+1)*(x^2+1)+m^2)/(x^2+1)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((m^2 - n*(1 + n)*(1 + x^2) + a^2*(1 + x^2)^2)*y[x])/(1 + x^2)^2) - (2*x*D[y[x],x])/(1 + x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(2*x*Derivative(y(x), x)/(x**2 + 1) + Derivative(y(x), (x, 2)) + (a**2*(x**2 + 1)**2 + m**2 - n*(n + 1)*(x**2 + 1))*y(x)/(x**2 + 1)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
False