54.3.338 problem 1355

Internal problem ID [12633]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1355
Date solved : Wednesday, October 01, 2025 at 02:18:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\frac {\left (x^{3}-1\right ) y^{\prime }}{x \left (x^{3}+1\right )}+\frac {x y}{x^{3}+1} \end{align*}
Maple. Time used: 0.051 (sec). Leaf size: 54
ode:=diff(diff(y(x),x),x) = -(x^3-1)/x/(x^3+1)*diff(y(x),x)+x/(x^3+1)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {2 c_1 \,x^{2} \operatorname {LegendreP}\left (-\frac {1}{3}, -\frac {2}{3}, \frac {-x^{3}+1}{x^{3}+1}\right ) \Gamma \left (\frac {2}{3}\right )}{3 \left (x^{3}+1\right )^{{1}/{3}} \left (-x^{3}\right )^{{1}/{3}}}+c_2 \left (x^{3}+1\right )^{{1}/{3}} \]
Mathematica. Time used: 0.182 (sec). Leaf size: 110
ode=D[y[x],{x,2}] == (x*y[x])/(1 + x^3) - ((-1 + x^3)*D[y[x],x])/(x*(1 + x^3)); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \exp \left (\int _1^x\frac {6 K[1]^3-2}{4 \left (K[1]^4+K[1]\right )}dK[1]-\frac {1}{2} \int _1^x\frac {K[2]^3-1}{K[2]^4+K[2]}dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {6 K[1]^3-2}{4 \left (K[1]^4+K[1]\right )}dK[1]\right )dK[3]+c_1\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x)/(x**3 + 1) + Derivative(y(x), (x, 2)) + (x**3 - 1)*Derivative(y(x), x)/(x*(x**3 + 1)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False