Internal
problem
ID
[12193]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
898
Date
solved
:
Wednesday, October 01, 2025 at 01:08:13 AM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = 1/16/x^6*(32*x^5*y(x)+8*x^3+32*x^5+64*x^6*y(x)^3+48*x^4*y(x)^2+12*x^2*y(x)+1)/(4*x^2*y(x)+1+4*x^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (1/16 + x^3/2 + 2*x^5 + (3*x^2*y[x])/4 + 2*x^5*y[x] + 3*x^4*y[x]^2 + 4*x^6*y[x]^3)/(x^6*(1 + 4*x^2 + 4*x^2*y[x])); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (64*x**6*y(x)**3 + 32*x**5*y(x) + 32*x**5 + 48*x**4*y(x)**2 + 8*x**3 + 12*x**2*y(x) + 1)/(16*x**6*(4*x**2*y(x) + 4*x**2 + 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)