Internal
problem
ID
[12175]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
880
Date
solved
:
Wednesday, October 01, 2025 at 01:06:25 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=diff(y(x),x) = -2*a/(-y(x)-2*a-2*a*y(x)^4+16*a^2*x*y(x)^2-32*a^3*x^2-2*a*y(x)^6+24*y(x)^4*a^2*x-96*y(x)^2*a^3*x^2+128*a^4*x^3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-2*a)/(-2*a - 32*a^3*x^2 + 128*a^4*x^3 - y[x] + 16*a^2*x*y[x]^2 - 96*a^3*x^2*y[x]^2 - 2*a*y[x]^4 + 24*a^2*x*y[x]^4 - 2*a*y[x]^6); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(2*a/(128*a**4*x**3 - 96*a**3*x**2*y(x)**2 - 32*a**3*x**2 + 24*a**2*x*y(x)**4 + 16*a**2*x*y(x)**2 - 2*a*y(x)**6 - 2*a*y(x)**4 - 2*a - y(x)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out