Internal
problem
ID
[12172]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
877
Date
solved
:
Wednesday, October 01, 2025 at 01:06:10 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = (-2*x*y(x)+2*x^3-2*x-y(x)^3+3*x^2*y(x)^2-3*y(x)*x^4+x^6)/(-y(x)+x^2-1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-2*x + 2*x^3 + x^6 - 2*x*y[x] - 3*x^4*y[x] + 3*x^2*y[x]^2 - y[x]^3)/(-1 + x^2 - y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**6 - 3*x**4*y(x) + 2*x**3 + 3*x**2*y(x)**2 - 2*x*y(x) - 2*x - y(x)**3)/(x**2 - y(x) - 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)