Internal
problem
ID
[12156]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
860
Date
solved
:
Wednesday, October 01, 2025 at 01:01:54 AM
CAS
classification
:
[`y=_G(x,y')`]
ode:=diff(y(x),x) = 1/2*(-sin(2*y(x))+x*cos(2*y(x))+cos(2*y(x))*x^3+cos(2*y(x))*x^4+x+x^3+x^4)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x/2 + x^3/2 + x^4/2 + (x*Cos[2*y[x]])/2 + (x^3*Cos[2*y[x]])/2 + (x^4*Cos[2*y[x]])/2 - Sin[2*y[x]]/2)/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**4*cos(2*y(x)) + x**4 + x**3*cos(2*y(x)) + x**3 + x*cos(2*y(x)) + x - sin(2*y(x)))/(2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(x**3 + x**2 + 1)*cos(y(x))**2 - sin(2*y(x))/2)/x cannot be solved by the factorable group method