1.2.10 problem 12

Internal problem ID [28]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.3. Problems at page 27
Problem number : 12
Date solved : Tuesday, September 30, 2025 at 03:38:37 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=x \ln \left (y\right ) \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=1 \\ \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 5
ode:=diff(y(x),x) = x*ln(y(x)); 
ic:=[y(1) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 1 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 6
ode=D[y[x],x]==x*Log[y[x]]; 
ic={y[1]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 1 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*log(y(x)) + Derivative(y(x), x),0) 
ics = {y(1): 1} 
dsolve(ode,func=y(x),ics=ics)
 
False