54.1.129 problem 132

Internal problem ID [11443]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 132
Date solved : Tuesday, September 30, 2025 at 08:21:09 PM
CAS classification : [_Bernoulli]

\begin{align*} 3 x y^{\prime }-3 x \ln \left (x \right ) y^{4}-y&=0 \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 160
ode:=3*x*diff(y(x),x)-3*x*ln(x)*y(x)^4-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {2^{{2}/{3}} {\left (-x \left (6 x^{2} \ln \left (x \right )-3 x^{2}-4 c_1 \right )^{2}\right )}^{{1}/{3}}}{6 x^{2} \ln \left (x \right )-3 x^{2}-4 c_1} \\ y &= -\frac {2^{{2}/{3}} {\left (-x \left (6 x^{2} \ln \left (x \right )-3 x^{2}-4 c_1 \right )^{2}\right )}^{{1}/{3}} \left (1+i \sqrt {3}\right )}{12 x^{2} \ln \left (x \right )-6 x^{2}-8 c_1} \\ y &= \frac {2^{{2}/{3}} {\left (-x \left (6 x^{2} \ln \left (x \right )-3 x^{2}-4 c_1 \right )^{2}\right )}^{{1}/{3}} \left (i \sqrt {3}-1\right )}{12 x^{2} \ln \left (x \right )-6 x^{2}-8 c_1} \\ \end{align*}
Mathematica. Time used: 0.16 (sec). Leaf size: 120
ode=3*x*D[y[x],x] - 3*x*Log[x]*y[x]^4 - y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {(-2)^{2/3} \sqrt [3]{x}}{\sqrt [3]{3 x^2-6 x^2 \log (x)+4 c_1}}\\ y(x)&\to \frac {2^{2/3} \sqrt [3]{x}}{\sqrt [3]{3 x^2-6 x^2 \log (x)+4 c_1}}\\ y(x)&\to -\frac {\sqrt [3]{-1} 2^{2/3} \sqrt [3]{x}}{\sqrt [3]{3 x^2-6 x^2 \log (x)+4 c_1}}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 1.562 (sec). Leaf size: 109
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x*y(x)**4*log(x) + 3*x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = 2^{\frac {2}{3}} \sqrt [3]{- \frac {x}{C_{1} + 6 x^{2} \log {\left (x \right )} - 3 x^{2}}}, \ y{\left (x \right )} = \frac {2^{\frac {2}{3}} \sqrt [3]{- \frac {x}{C_{1} + 6 x^{2} \log {\left (x \right )} - 3 x^{2}}} \left (-1 - \sqrt {3} i\right )}{2}, \ y{\left (x \right )} = \frac {2^{\frac {2}{3}} \sqrt [3]{- \frac {x}{C_{1} + 6 x^{2} \log {\left (x \right )} - 3 x^{2}}} \left (-1 + \sqrt {3} i\right )}{2}\right ] \]