54.1.64 problem 65

Internal problem ID [11378]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 65
Date solved : Sunday, October 12, 2025 at 01:36:46 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y^{\prime }-\sqrt {\frac {y^{3}+1}{x^{3}+1}}&=0 \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 47
ode:=diff(y(x),x)-((y(x)^3+1)/(x^3+1))^(1/2) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \int _{}^{y}\frac {1}{\sqrt {\textit {\_a}^{3}+1}}d \textit {\_a} -\frac {\int _{}^{x}\sqrt {\frac {y^{3}+1}{\textit {\_a}^{3}+1}}d \textit {\_a}}{\sqrt {y^{3}+1}}+c_1 = 0 \]
Mathematica. Time used: 97.356 (sec). Leaf size: 337
ode=D[y[x],x] - Sqrt[(y[x]^3+1)/(x^3+1)]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\frac {i (\text {$\#$1}+1) \sqrt {1+\frac {6 i}{\left (\sqrt {3}-3 i\right ) (\text {$\#$1}+1)}} \sqrt {1-\frac {6 i}{\left (\sqrt {3}+3 i\right ) (\text {$\#$1}+1)}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-\frac {6 i}{3 i+\sqrt {3}}}}{\sqrt {\text {$\#$1}+1}}\right ),\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )}{\sqrt {-\frac {3 i}{2 \left (\sqrt {3}+3 i\right )}} \sqrt {\text {$\#$1}^2-\text {$\#$1}+1}}\&\right ]\left [\frac {i (x+1) \sqrt {1+\frac {6 i}{\left (\sqrt {3}-3 i\right ) (x+1)}} \sqrt {1-\frac {6 i}{\left (\sqrt {3}+3 i\right ) (x+1)}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-\frac {6 i}{3 i+\sqrt {3}}}}{\sqrt {x+1}}\right ),\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )}{\sqrt {-\frac {3 i}{2 \left (\sqrt {3}+3 i\right )}} \sqrt {x^2-x+1}}+c_1\right ]\\ y(x)&\to -1\\ y(x)&\to \sqrt [3]{-1}\\ y(x)&\to -(-1)^{2/3} \end{align*}
Sympy. Time used: 3.343 (sec). Leaf size: 94
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sqrt((y(x)**3 + 1)/(x**3 + 1)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \begin {cases} \frac {y{\left (x \right )}}{\sqrt {y^{3}{\left (x \right )} + 1}} & \text {for}\: \left |{y{\left (x \right )}}\right | < 1 \\\frac {{G_{2, 2}^{1, 1}\left (\begin {matrix} 0 & 1 \\0 & -1 \end {matrix} \middle | {y{\left (x \right )}} \right )} y{\left (x \right )}}{\sqrt {y^{3}{\left (x \right )} + 1}} + \frac {{G_{2, 2}^{0, 2}\left (\begin {matrix} 0, 1 & \\ & -1, 0 \end {matrix} \middle | {y{\left (x \right )}} \right )} y{\left (x \right )}}{\sqrt {y^{3}{\left (x \right )} + 1}} & \text {otherwise} \end {cases} - \frac {\int \sqrt {\frac {y^{3}{\left (x \right )} + 1}{x^{3} + 1}}\, dx}{\sqrt {\left (y{\left (x \right )} + 1\right ) \left (y^{2}{\left (x \right )} - y{\left (x \right )} + 1\right )}} = C_{1} \]