53.1.749 problem 771

Internal problem ID [11221]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 771
Date solved : Tuesday, September 30, 2025 at 07:37:03 PM
CAS classification : [_Laguerre]

\begin{align*} 2 x y^{\prime \prime }-\left (3+2 x \right ) y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.049 (sec). Leaf size: 24
ode:=2*x*diff(diff(y(x),x),x)-(2*x+3)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,x^{{5}/{2}} \operatorname {hypergeom}\left (\left [2\right ], \left [\frac {7}{2}\right ], x\right )-\frac {2 \left (x -\frac {3}{2}\right ) {\mathrm e}^{x} c_2}{3} \]
Mathematica. Time used: 0.137 (sec). Leaf size: 52
ode=2*x*D[y[x],{x,2}]-(3+2*x)*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} e^x (2 x-3) \left (c_2 \int _1^x\frac {4 e^{-K[1]} K[1]^{3/2}}{(3-2 K[1])^2}dK[1]+c_1\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), (x, 2)) - (2*x + 3)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False