53.1.734 problem 751

Internal problem ID [11206]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 751
Date solved : Tuesday, September 30, 2025 at 07:36:55 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 17
ode:=x*diff(diff(y(x),x),x)+(4*x^2+1)*diff(y(x),x)+4*x*(x^2+1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x^{2}} \left (c_2 \ln \left (x \right )+c_1 \right ) \]
Mathematica. Time used: 0.02 (sec). Leaf size: 21
ode=x*D[y[x],{x,2}]+(4*x^2+1)*D[y[x],x]+4*x*(x^2+1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x^2} (c_2 \log (x)+c_1) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x*(x**2 + 1)*y(x) + x*Derivative(y(x), (x, 2)) + (4*x**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False