53.1.544 problem 560

Internal problem ID [11016]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 560
Date solved : Tuesday, September 30, 2025 at 07:35:05 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-x \left (5-x \right ) y^{\prime }+\left (9-4 x \right ) y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 27
ode:=x^2*diff(diff(y(x),x),x)-x*(5-x)*diff(y(x),x)+(9-4*x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (-{\mathrm e}^{-x} c_2 +\left (\operatorname {Ei}_{1}\left (x \right ) c_2 +c_1 \right ) \left (1+x \right )\right ) x^{3} \]
Mathematica. Time used: 0.289 (sec). Leaf size: 72
ode=x^2*D[y[x],{x,2}]-x*(5-x)*D[y[x],x]+(9-4*x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sqrt {x} (x+1) \left (c_2 \int _1^x\frac {e^{-K[2]-1}}{K[2] (K[2]+1)^2}dK[2]+c_1\right ) \exp \left (\frac {1}{2} \left (-\int _1^x\left (1-\frac {5}{K[1]}\right )dK[1]+x+1\right )\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*(5 - x)*Derivative(y(x), x) + (9 - 4*x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False