Internal
problem
ID
[10772]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
303
Date
solved
:
Tuesday, September 30, 2025 at 07:31:49 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*(-x^2+2)*diff(diff(y(x),x),x)-(x^2+4*x+2)*((1-x)*diff(y(x),x)+y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=x*(2-x^2)*D[y[x],{x,2}]-(x^2+4*x+2)*((1-x)*D[y[x],x]+y[x])==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(2 - x**2)*Derivative(y(x), (x, 2)) - ((1 - x)*Derivative(y(x), x) + y(x))*(x**2 + 4*x + 2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False