Internal
problem
ID
[10541]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
71
Date
solved
:
Tuesday, September 30, 2025 at 07:29:31 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(3*x^2+x+1)*diff(diff(y(x),x),x)+(2+15*x)*diff(y(x),x)+12*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1+x+3*x^2)*D[y[x],{x,2}]+(2+15*x)*D[y[x],x]+12*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((15*x + 2)*Derivative(y(x), x) + (3*x**2 + x + 1)*Derivative(y(x), (x, 2)) + 12*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False