52.2.41 problem 41

Internal problem ID [10464]
Book : Second order enumerated odes
Section : section 2
Problem number : 41
Date solved : Tuesday, September 30, 2025 at 07:27:43 PM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=x -y^{2} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=diff(y(x),x) = x-y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \operatorname {AiryAi}\left (1, x\right )+\operatorname {AiryBi}\left (1, x\right )}{c_1 \operatorname {AiryAi}\left (x \right )+\operatorname {AiryBi}\left (x \right )} \]
Mathematica. Time used: 0.078 (sec). Leaf size: 223
ode=D[y[x],x]==x-y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {-i x^{3/2} \left (2 \operatorname {BesselJ}\left (-\frac {2}{3},\frac {2}{3} i x^{3/2}\right )+c_1 \left (\operatorname {BesselJ}\left (-\frac {4}{3},\frac {2}{3} i x^{3/2}\right )-\operatorname {BesselJ}\left (\frac {2}{3},\frac {2}{3} i x^{3/2}\right )\right )\right )-c_1 \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )}{2 x \left (\operatorname {BesselJ}\left (\frac {1}{3},\frac {2}{3} i x^{3/2}\right )+c_1 \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )\right )}\\ y(x)&\to \frac {i x^{3/2} \operatorname {BesselJ}\left (-\frac {4}{3},\frac {2}{3} i x^{3/2}\right )-i x^{3/2} \operatorname {BesselJ}\left (\frac {2}{3},\frac {2}{3} i x^{3/2}\right )+\operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )}{2 x \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list