Internal
problem
ID
[10430]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
8
Date
solved
:
Tuesday, September 30, 2025 at 07:23:35 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
ode:=diff(y(x),x) = (x+y(x))^4; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x + y[x])^4; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(x + y(x))**4 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)