51.4.7 problem 7

Internal problem ID [10364]
Book : First order enumerated odes
Section : section 4. First order odes solved using series method
Problem number : 7
Date solved : Tuesday, September 30, 2025 at 07:22:37 PM
CAS classification : [_linear]

\begin{align*} x y^{\prime }+y&=2 x^{4}+x^{3}+x \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.029 (sec). Leaf size: 28
Order:=6; 
ode:=x*diff(y(x),x)+y(x) = 2*x^4+x^3+x; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 \left (1+\operatorname {O}\left (x^{6}\right )\right )}{x}+x \left (\frac {1}{2}+\frac {1}{4} x^{2}+\frac {2}{5} x^{3}+\operatorname {O}\left (x^{5}\right )\right ) \]
Mathematica. Time used: 0.023 (sec). Leaf size: 36
ode=x*D[y[x],x]+y[x]==x+x^3+2*x^4; 
AsymptoticDSolveValue[ode,y[x],{x,0,5}]
 
\[ y(x)\to \frac {\frac {2 x^5}{5}+\frac {x^4}{4}+\frac {x^2}{2}}{x}+\frac {c_1}{x} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x**4 - x**3 + x*Derivative(y(x), x) - x + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
ValueError : ODE -2*x**4 - x**3 + x*Derivative(y(x), x) - x + y(x) does not match hint 1st_power_series