| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y y^{\prime }-\frac {a \left (6 x -13\right ) y}{13 x^{{5}/{2}}} = -\frac {a^{2} \left (x -1\right ) \left (x -13\right )}{26 x^{4}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }+\frac {a \left (24 x +11\right ) x^{{27}/{20}} y}{30} = -\frac {a^{2} \left (x -1\right ) \left (9 x +1\right )}{60 x^{{17}/{10}}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-\frac {2 a \left (2+3 x \right ) y}{5 x^{{8}/{5}}} = \frac {a^{2} \left (x -1\right ) \left (1+8 x \right )}{5 x^{{11}/{5}}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-\frac {6 a \left (1+4 x \right ) y}{5 x^{{7}/{5}}} = \frac {a^{2} \left (x -1\right ) \left (27 x +8\right )}{5 x^{{9}/{5}}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-\frac {a \left (x +4\right ) y}{5 x^{{8}/{5}}} = \frac {a^{2} \left (x -1\right ) \left (3 x +7\right )}{5 x^{{3}/{5}}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-\frac {a \left (x +4\right ) y}{5 x^{{8}/{5}}} = \frac {a^{2} \left (x -1\right ) \left (3 x +7\right )}{5 x^{{11}/{5}}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime }-\frac {a \left (2 x -1\right ) y}{x^{{5}/{2}}} = \frac {a^{2} \left (x -1\right ) \left (3 x +1\right )}{2 x^{4}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+\frac {a \left (x -6\right ) y}{5 x^{{7}/{5}}} = \frac {2 a^{2} \left (x -1\right ) \left (x +4\right )}{5 x^{{9}/{5}}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+\frac {a \left (21 x +19\right ) y}{5 x^{{7}/{5}}} = -\frac {2 a^{2} \left (x -1\right ) \left (9 x -4\right )}{5 x^{{9}/{5}}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-\frac {3 a y}{x^{{7}/{4}}} = \frac {a^{2} \left (x -1\right ) \left (x -9\right )}{4 x^{{5}/{2}}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-\frac {a \left (\left (1+k \right ) x -1\right ) y}{x^{2}} = \frac {a^{2} \left (1+k \right ) \left (x -1\right )}{x^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime }-a \left (\left (k -2\right ) x +2 k -3\right ) x^{-k} y = a^{2} \left (k -2\right ) \left (x -1\right )^{2} x^{1-2 k}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-\frac {a \left (\left (4 k -7\right ) x -4 k +5\right ) x^{-k} y}{2} = \frac {a^{2} \left (2 k -3\right ) \left (x -1\right )^{2} x^{1-2 k}}{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-\left (\left (-1+2 n \right ) x -a n \right ) x^{-n -1} y = n \left (x -a \right ) x^{-2 n}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime }-\left (\left (n +1\right ) x -a n \right ) x^{n -1} \left (x -a \right )^{-n -2} y = n \,x^{2 n} \left (x -a \right )^{-2 n -3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-a \left (\left (2 k -3\right ) x +1\right ) x^{-k} y = a^{2} \left (k -2\right ) \left (\left (k -1\right ) x +1\right ) x^{2-2 k}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-a \left (\left (n +2 k -3\right ) x +3-2 k \right ) x^{-k} y = a^{2} \left (\left (n +k -1\right ) x^{2}-\left (n +2 k -3\right ) x +k -2\right ) x^{1-2 k}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-\frac {a \left (\left (n +2\right ) x -2\right ) x^{-\frac {2 n +1}{n}} y}{n} = \frac {a^{2} \left (\left (n +1\right ) x^{2}-2 x -n +1\right ) x^{-\frac {3 n +2}{n}}}{n}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-\frac {a \left (\frac {\left (n +4\right ) x}{n +2}-2\right ) x^{-\frac {2 n +1}{n}} y}{n} = \frac {a^{2} \left (2 x^{2}+\left (n^{2}+n -4\right ) x -\left (n -1\right ) \left (n +2\right )\right ) x^{-\frac {3 n +2}{n}}}{n \left (n +2\right )}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }+\frac {a \left (\frac {\left (3 n +5\right ) x}{2}+\frac {n -1}{n +1}\right ) x^{-\frac {n +4}{3+n}} y}{3+n} = -\frac {a^{2} \left (\left (n +1\right ) x^{2}-\frac {\left (n^{2}+2 n +5\right ) x}{n +1}+\frac {4}{n +1}\right ) x^{-\frac {n +5}{3+n}}}{6+2 n}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-a \left (\frac {n +2}{n}+b \,x^{n}\right ) y = -\frac {a^{2} x \left (\frac {n +1}{n}+b \,x^{n}\right )}{n}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime } = \left (a \,{\mathrm e}^{x}+b \right ) y+c \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}-b^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime } = \left (a \left (2 \mu +\lambda \right ) {\mathrm e}^{\lambda x}+b \right ) {\mathrm e}^{x \mu } y+\left (-a^{2} \mu \,{\mathrm e}^{2 \lambda x}-a b \,{\mathrm e}^{\lambda x}+c \right ) {\mathrm e}^{2 x \mu }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime } = {\mathrm e}^{\lambda x} \left (2 a \lambda x +a +b \right ) y-{\mathrm e}^{2 \lambda x} \left (a^{2} \lambda \,x^{2}+a b x +c \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime } = {\mathrm e}^{a x} \left (2 x^{2} a +b +2 x \right ) y+{\mathrm e}^{2 a x} \left (-a \,x^{4}-b \,x^{2}+c \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }-a \left (1+2 n +2 n \left (n +1\right ) x \right ) {\mathrm e}^{\left (n +1\right ) x} y = -a^{2} n \left (n +1\right ) \left (n x +1\right ) x \,{\mathrm e}^{2 \left (n +1\right ) x}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+a \left (1+2 b \sqrt {x}\right ) {\mathrm e}^{2 b \sqrt {x}} y = -a^{2} b \,x^{{3}/{2}} {\mathrm e}^{4 b \sqrt {x}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime } = \left (a \cosh \left (x \right )+b \right ) y-a b \sinh \left (x \right )+c
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime } = \left (a \sinh \left (x \right )+b \right ) y-a b \cosh \left (x \right )+c
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime } = \left (2 \ln \left (x \right )+a +1\right ) y+x \left (-\ln \left (x \right )^{2}-a \ln \left (x \right )+b \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime } = \left (2 \ln \left (x \right )^{2}+2 \ln \left (x \right )+a \right ) y+x \left (-\ln \left (x \right )^{4}-a \ln \left (x \right )^{2}+b \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime } = a x \cos \left (\lambda \,x^{2}\right ) y+x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime } = a x \sin \left (\lambda \,x^{2}\right ) y+x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (y+a x +b \right ) y^{\prime } = \alpha y+\beta x +\gamma
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (y+a k \,x^{2}+b x +c \right ) y^{\prime } = -a y^{2}+2 a k x y+m y+k \left (k +b -m \right ) x +s
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (y+a \,x^{n +1}+b \,x^{n}\right ) y^{\prime } = \left (a n \,x^{n}+c \,x^{n -1}\right ) y
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime } x = a y^{2}+b y+c \,x^{n}+s
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime } x = -n y^{2}+a \left (2 n +1\right ) x y+b y-a^{2} n \,x^{2}-a b x +c
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime } x = \left (-n +1\right ) y^{2}+\left (a \left (2 n +1\right ) x +2 n -1\right ) y-a^{2} n \,x^{2}-b x -n
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (a x y-a k y+b x -b k \right ) y^{\prime } = c y^{2}+d x y+\left (-d k +b \right ) y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\left (3 a x +\lambda s \right ) y+\left (3 s +4 \lambda \right ) x \right ) y^{\prime } = 2 a y^{2}+6 \lambda +2 s +2 x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (\left (4 a x +\lambda s \right ) y+\left (3 s +4 \lambda \right ) x \right ) y^{\prime } = \frac {3 a y^{2}}{2}+6 \lambda +2 s +2 x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (2 A x y+a y+b x +c \right ) y^{\prime } = A y^{2}+A \,k^{2} x^{2}+m y+k \left (a k +b -m \right ) x +s
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (2 x y+\left (1-m \right ) A y-\frac {2 \left (1+m \right ) x}{3+m}\right ) y^{\prime } = \frac {\left (1-m \right ) y^{2}}{2}+\frac {\left (m -1\right ) y}{3+m}+x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (A x y+B \,x^{2}+k x \right ) y^{\prime } = d y^{2}+e x y+f \,x^{2}+k y
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (2 A x y+B \,x^{2}+k x \right ) y^{\prime } = A y^{2}+c x y+d \,x^{2}-c \beta x -A \,\beta ^{2}-k \beta
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (A x y+B \,x^{2}+k x \right ) y^{\prime } = A y^{2}+c x y+d \,x^{2}+\left (-A \beta +k \right ) y-c \beta x -k \beta
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (A x y+A k y+B \,x^{2}+B k x \right ) y^{\prime } = c y^{2}+d x y+k \left (d -B \right ) y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (A x y+B \,x^{2}+a_{1} x +b_{1} y+c_{1} \right ) y^{\prime } = A y^{2}+B x y+a_{2} x +b_{2} y+c_{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (A x y+B \,x^{2}+a y+b x +c \right ) y^{\prime } = k A x y+k B \,x^{2}+m y+k \left (a k +b -m \right ) x +s
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (2 A x y+B \,x^{2}+a y+b x +c \right ) y^{\prime } = A y^{2}+k \left (A k +B \right ) x^{2}+a k y+b k x +s
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (2 A x y-A k \,x^{2}+a y+b x +c \right ) y^{\prime } = A y^{2}+m y+k \left (a k +b -m \right ) x +s
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (2 A x y+B \,x^{2}+a y-a k x +b \right ) y^{\prime } = A y^{2}+k \left (A k +B \right ) x^{2}+m y-m k x +s
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (2 A x y+B \,x^{2}+a y+b x +c \right ) y^{\prime } = A y^{2}+k \left (A k +B \right ) x^{2}+b y+a \,k^{2} x +s
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (\left (a x +c \right ) y+\left (-n +1\right ) x^{2}+\left (-1+2 n \right ) x -n \right ) y^{\prime } = 2 a y^{2}+2 x y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\left (x +c \right ) y+\left (n +1\right ) x^{2}-a \left (2 n +1\right ) x +a^{2} n \right ) y^{\prime } = \frac {2 n y^{2}}{3 n -1}+2 x y
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (\left (a_{2} x^{2}+a_{1} x +a_{0} \right ) y+b_{2} x^{2}+b_{1} x +b_{0} \right ) y^{\prime } = c_{2} y^{2}+c_{1} y+c_{0}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (\left (12 a^{2} x^{2}-7 a x +1\right ) y+4 c \,x^{2}-5 b x \right ) y^{\prime } = -2 x \left (3 a^{2} y^{2}+2 c y+3 b^{2}\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x \left (2 a x y+b \right ) y^{\prime } = -4 a \,x^{2} y^{2}-3 b x y+c \,x^{2}+k
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime } = -n y^{2}+a \left (2 n +1\right ) {\mathrm e}^{x} y+b y-a^{2} n \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}+c
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = a x y^{3}+2 a b \,x^{2} y^{2}-b -2 a \,b^{3} x^{4}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 9 y^{\prime } = -x^{m} \left (a \,x^{1-m}+b \right )^{2 \lambda +1} y^{3}-x^{-2 m} \left (9 a +2+9 b m \,x^{m -1}\right ) \left (a \,x^{1-m}+b \right )^{-\lambda -2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = -\left (a x +b \,x^{m}\right ) y^{3}+y^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {y^{3}}{\sqrt {x^{2} a +b x +c}}+y^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-a \,x^{n -2} \left (a \,x^{n}+n +1\right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (x^{2} a +b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{m +n}+b \,x^{2 m}+m \,x^{m -1}\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}+b -c \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{n}+1\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-a^{2} x \right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-a^{2} x \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+x^{n} \left (x^{2} a +\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (1+m \right ) x^{m -1}\right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a b \,x^{m +n}+b \left (1+m \right ) x^{m -1}-a \,x^{n -1}\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a b \,x^{m +n}+b c \,x^{m}+a n \,x^{n -1}\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+a y^{\prime }+b \,x^{n} \left (-b \,x^{n +1}+a +n \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+\left (A \,x^{2}+B x +\operatorname {C0} \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}-b^{2} x +2 b \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}-c x +b \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (a b \,x^{n}+b -3 n +1\right ) y^{\prime }+a^{2} n \left (b -n \right ) x^{-1+2 n} y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{n -2} y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (a \,x^{n}+b x \right ) y^{\prime }+\left (a b \,x^{n}+a n \,x^{n -1}-b \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+a x -1\right ) y^{\prime }+a^{2} b \,x^{n} y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (c -1\right ) \left (a \,x^{n -1}+b \,x^{m -1}\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (a b \,x^{m +n}+a n \,x^{n}+b \,x^{m}+1-2 n \right ) y^{\prime }+a^{2} b n \,x^{2 n +m -1} y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x +\gamma \right ) y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-\left (a^{2} x^{2 n}+a \left (2 b +n -1\right ) x^{n}+b \left (b -1\right )\right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (a \,x^{3 n}+b \,x^{2 n}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (a \,x^{2 n} \left (b \,x^{n}+c \right )^{m}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x \left (x^{2} a +b x +c \right ) y^{\prime }+\left (A \,x^{3}+B \,x^{2}+C x +d \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a b \,x^{n}+a c \,x^{n -1}+b^{2} x^{2}+2 b c x +c^{2}-c \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n +2 m}-b^{2} x^{4 m +2}+a m \,x^{n -1}-m^{2}-m \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (a \,x^{n +2}+b \,x^{2}+c \right ) y^{\prime }+\left (a n \,x^{n +1}+a c \,x^{n}+b c \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x -\left (a \,x^{n}-a b \,x^{n -1}+b \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (a \,x^{3}+x^{2}+b \right ) y^{\prime \prime }+a^{2} x \left (x^{2}-b \right ) y^{\prime }-a^{3} b x y = 0
\]
|
✗ |
✓ |
✗ |
|