5.1.5 Problems 401 to 500

Table 5.9: Problems not solved by Mathematica

#

ODE

Mathematica

Maple

Sympy

12680

\[ {} y^{\prime \prime } = -\frac {\left (\left (1-4 a \right ) x^{2}-1\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (\left (-v^{2}+x^{2}\right ) \left (x^{2}-1\right )^{2}+4 a \left (a +1\right ) x^{4}-2 a \,x^{2} \left (x^{2}-1\right )\right ) y}{x^{2} \left (x^{2}-1\right )^{2}} \]

12686

\[ {} y^{\prime \prime } = -\frac {\left (x^{2} \left (\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right )+\left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )+\left (x^{2}-\operatorname {a3} \right ) \left (x^{2}-\operatorname {a1} \right )\right )-\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )\right ) y^{\prime }}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )}-\frac {\left (A \,x^{2}+B \right ) y}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )} \]

12697

\[ {} y^{\prime \prime } = -\frac {\left (x^{2} \sin \left (x \right )-2 x \cos \left (x \right )\right ) y^{\prime }}{x^{2} \cos \left (x \right )}-\frac {\left (2 \cos \left (x \right )-x \sin \left (x \right )\right ) y}{x^{2} \cos \left (x \right )} \]

12718

\[ {} y^{\prime \prime } = -\frac {f^{\prime }\left (x \right ) y^{\prime }}{2 f \left (x \right )}-\frac {g \left (x \right ) y}{f \left (x \right )} \]

12731

\[ {} y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y = 0 \]

12732

\[ {} f^{\prime }\left (x \right ) y+2 f \left (x \right ) y^{\prime }+y^{\prime \prime \prime } = 0 \]

12750

\[ {} 2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y = 0 \]

12755

\[ {} x^{2} y^{\prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }-y = 0 \]

12766

\[ {} x^{2} y^{\prime \prime \prime }-\left (x +\nu \right ) x y^{\prime \prime }+\nu \left (2 x +1\right ) y^{\prime }-\nu \left (1+x \right ) y = 0 \]

12779

\[ {} x^{3} y^{\prime \prime \prime }+3 \left (1-a \right ) x^{2} y^{\prime \prime }+\left (4 b^{2} c^{2} x^{2 c +1}+1-4 \nu ^{2} c^{2}+3 a \left (a -1\right ) x \right ) y^{\prime }+\left (4 b^{2} c^{2} \left (c -a \right ) x^{2 c}+a \left (4 \nu ^{2} c^{2}-a^{2}\right )\right ) y = 0 \]

12803

\[ {} y^{\prime \prime \prime \prime }+a \left (b x -1\right ) y^{\prime \prime }+a b y^{\prime }+\lambda y = 0 \]

12804

\[ {} y^{\prime \prime \prime \prime }+\left (x^{2} a +b \lambda +c \right ) y^{\prime \prime }+\left (x^{2} a +\beta \lambda +\gamma \right ) y = 0 \]

12811

\[ {} x^{2} y^{\prime \prime \prime \prime }+2 x y^{\prime \prime \prime }+a y-b \,x^{2} = 0 \]

12831

\[ {} \left (x^{2}-1\right )^{2} y^{\prime \prime \prime \prime }+10 x \left (x^{2}-1\right ) y^{\prime \prime \prime }+\left (24 x^{2}-8-2 \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )\right ) \left (x^{2}-1\right )\right ) y^{\prime \prime }-6 x \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )-2\right ) y^{\prime }+\left (\left (\mu \left (\mu +1\right )-\nu \left (\nu +1\right )\right )^{2}-2 \mu \left (\mu +1\right )-2 \nu \left (\nu +1\right )\right ) y = 0 \]

12840

\[ {} y^{\left (5\right )}-a x y-b = 0 \]

12845

\[ {} x y^{\left (5\right )}-\left (a A_{1} -A_{0} \right ) x -A_{1} -\left (\left (a A_{2} -A_{1} \right ) x +A_{2} \right ) y^{\prime } = 0 \]

12849

\[ {} \left (x -a \right )^{5} \left (x -b \right )^{5} y^{\left (5\right )}-c y = 0 \]

12852

\[ {} y^{\prime \prime }-6 y^{2}-x = 0 \]

12854

\[ {} y^{\prime \prime }+a y^{2}+b x +c = 0 \]

12855

\[ {} y^{\prime \prime }-2 y^{3}-x y+a = 0 \]

12857

\[ {} y^{\prime \prime }-2 y^{3} a^{2}+2 a b x y-b = 0 \]

12858

\[ {} y^{\prime \prime }+d +b x y+c y+a y^{3} = 0 \]

12860

\[ {} y^{\prime \prime }+a \,x^{r} y^{2} = 0 \]

12862

\[ {} y^{\prime \prime }-\frac {1}{\left (a y^{2}+b x y+c \,x^{2}+\alpha y+\beta x +\gamma \right )^{{3}/{2}}} = 0 \]

12864

\[ {} y^{\prime \prime }+a \,{\mathrm e}^{x} \sqrt {y} = 0 \]

12865

\[ {} y^{\prime \prime }+{\mathrm e}^{x} \sin \left (y\right ) = 0 \]

12867

\[ {} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta \sin \left (x \right ) = 0 \]

12868

\[ {} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right ) = 0 \]

12870

\[ {} y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y = 0 \]

12871

\[ {} y^{\prime \prime }-7 y^{\prime }-y^{{3}/{2}}+12 y = 0 \]

12874

\[ {} y^{\prime \prime }-\frac {\left (3 n +4\right ) y^{\prime }}{n}-\frac {2 \left (n +1\right ) \left (n +2\right ) y \left (y^{\frac {n}{n +1}}-1\right )}{n^{2}} = 0 \]

12875

\[ {} y^{\prime \prime }+a y^{\prime }+b y^{n}+\frac {\left (a^{2}-1\right ) y}{4} = 0 \]

12876

\[ {} y^{\prime \prime }+a y^{\prime }+b \,x^{v} y^{n} = 0 \]

12877

\[ {} y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{y}-2 a = 0 \]

12878

\[ {} y^{\prime \prime }+a y^{\prime }+f \left (x \right ) \sin \left (y\right ) = 0 \]

12879

\[ {} -y^{3}+y y^{\prime }+y^{\prime \prime } = 0 \]

12880

\[ {} y^{\prime \prime }+y y^{\prime }-y^{3}+a y = 0 \]

12882

\[ {} y^{\prime \prime }+\left (y+3 f \left (x \right )\right ) y^{\prime }-y^{3}+f \left (x \right ) y^{2}+y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) = 0 \]

12889

\[ {} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

12891

\[ {} y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b \sin \left (y\right ) = 0 \]

12895

\[ {} y^{\prime \prime }-k \,x^{a} y^{b} {y^{\prime }}^{r} = 0 \]

12905

\[ {} x y^{\prime \prime }+2 y^{\prime }-x y^{n} = 0 \]

12906

\[ {} x y^{\prime \prime }+2 y^{\prime }+a \,x^{v} y^{n} = 0 \]

12907

\[ {} x y^{\prime \prime }+2 y^{\prime }+x \,{\mathrm e}^{y} = 0 \]

12908

\[ {} b \,{\mathrm e}^{y} x +a y^{\prime }+x y^{\prime \prime } = 0 \]

12909

\[ {} x y^{\prime \prime }+a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y} = 0 \]

12914

\[ {} x^{2} y^{\prime \prime } = a \left (y^{n}-y\right ) \]

12915

\[ {} x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right ) = 0 \]

12918

\[ {} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

12919

\[ {} x^{2} y^{\prime \prime }-\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}} = 0 \]

12921

\[ {} 4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y = 0 \]

12925

\[ {} 2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 x y\right ) y^{\prime }+b +x y \left (a +3 x y-2 x^{2} y^{2}\right ) = 0 \]

12926

\[ {} 2 \left (-x^{k}+4 x^{3}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )-\left (-12 x^{2}+k \,x^{k -1}\right ) \left (y^{2}+3 y^{\prime }\right )+a x y+b = 0 \]

12927

\[ {} x^{4} y^{\prime \prime }+a^{2} y^{n} = 0 \]

12931

\[ {} \sqrt {x}\, y^{\prime \prime }-y^{{3}/{2}} = 0 \]

12934

\[ {} y y^{\prime \prime }-a x = 0 \]

12935

\[ {} y y^{\prime \prime }-x^{2} a = 0 \]

12941

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right ) = 0 \]

12946

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+b y^{3} = 0 \]

12948

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (-1+a y\right ) y^{\prime }-y \left (1+y\right ) \left (b^{2} y^{2}-a^{2}\right ) = 0 \]

12966

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{2}+a = 0 \]

12969

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-4 y^{2} \left (2 y+x \right ) = 0 \]

12971

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3} = 0 \]

12972

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (b x +a y\right ) y^{2} = 0 \]

12974

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4} = 0 \]

12977

\[ {} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2}+f \left (x \right ) y^{2} = 0 \]

12994

\[ {} x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime }+x \left (d +a y^{4}\right )+y \left (c +b y^{2}\right ) = 0 \]

12995

\[ {} x y y^{\prime \prime }-x {y^{\prime }}^{2}+a y y^{\prime }+b x y^{3} = 0 \]

13003

\[ {} x^{2} \left (y-1\right ) y^{\prime \prime }-2 x^{2} {y^{\prime }}^{2}-2 x \left (y-1\right ) y^{\prime }-2 y \left (y-1\right )^{2} = 0 \]

13011

\[ {} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime } = 0 \]

13012

\[ {} y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}-a x -b = 0 \]

13015

\[ {} \left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y y^{\prime }\right ) = 0 \]

13027

\[ {} 2 x^{2} y \left (y-1\right ) y^{\prime \prime }-x^{2} \left (3 y-1\right ) {y^{\prime }}^{2}+2 x y \left (y-1\right ) y^{\prime }+\left (a y^{2}+b \right ) \left (y-1\right )^{3}+c x y^{2} \left (y-1\right )+d \,x^{2} y^{2} \left (1+y\right ) = 0 \]

13031

\[ {} 2 y^{3} y^{\prime \prime }+y^{4}-a^{2} x y^{2}-1 = 0 \]

13032

\[ {} 2 y^{3} y^{\prime \prime }+y^{2} {y^{\prime }}^{2}-x^{2} a -b x -c = 0 \]

13039

\[ {} \sqrt {x^{2}+y^{2}}\, y^{\prime \prime }-a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

13043

\[ {} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

13045

\[ {} \left (x y^{\prime }-y\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right )^{2} = 0 \]

13046

\[ {} a \,x^{3} y^{\prime } y^{\prime \prime }+b y^{2} = 0 \]

13047

\[ {} y+3 x y^{\prime }+2 {y^{\prime }}^{3} y+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

13052

\[ {} a^{2} {y^{\prime \prime }}^{2}-2 a x y^{\prime \prime }+y^{\prime } = 0 \]

13056

\[ {} y {y^{\prime \prime }}^{2}-a \,{\mathrm e}^{2 x} = 0 \]

13060

\[ {} \sqrt {a {y^{\prime \prime }}^{2}+b {y^{\prime }}^{2}}+c y y^{\prime \prime }+d {y^{\prime }}^{2} = 0 \]

13062

\[ {} y^{\prime \prime \prime }+y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

13063

\[ {} y^{\prime \prime \prime }-y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

13064

\[ {} a y y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

13065

\[ {} x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }+\left (2 x y-1\right ) y^{\prime }+y^{2}-f \left (x \right ) = 0 \]

13066

\[ {} x^{2} y^{\prime \prime \prime }+x \left (y-1\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime } = 0 \]

13067

\[ {} y^{3} y^{\prime }-y^{\prime } y^{\prime \prime }+y y^{\prime \prime \prime } = 0 \]

13074

\[ {} y^{\prime } y^{\prime \prime \prime \prime }-y^{\prime \prime } y^{\prime \prime \prime }+{y^{\prime }}^{3} y^{\prime \prime \prime } = 0 \]

13078

\[ {} y^{\prime \prime \prime } = f \left (y\right ) \]

13113

\[ {} \left [x^{\prime \prime }\left (t \right ) = \left (3 \cos \left (a t +b \right )^{2}-1\right ) c^{2} x \left (t \right )+\frac {3 c^{2} y \left (t \right ) \sin \left (2 a t b \right )}{2}, y^{\prime \prime }\left (t \right ) = \left (3 \sin \left (a t +b \right )^{2}-1\right ) c^{2} y \left (t \right )+\frac {3 c^{2} x \left (t \right ) \sin \left (2 a t b \right )}{2}\right ] \]

13137

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) \left (a \left (p x \left (t \right )+q y \left (t \right )\right )+\alpha \right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (\beta +b \left (p x \left (t \right )+q y \left (t \right )\right )\right )] \]

13140

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right ) y \left (t \right )^{2}+x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right ) x \left (t \right )^{2}-x \left (t \right )-y \left (t \right )] \]

13141

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-x \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-y \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )] \]

13142

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right )+x \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}-1\right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}-1\right )] \]

13147

\[ {} \left [x^{\prime \prime }\left (t \right ) = a \,{\mathrm e}^{2 x \left (t \right )}-{\mathrm e}^{-x \left (t \right )}+{\mathrm e}^{-2 x \left (t \right )} \cos \left (y \left (t \right )\right )^{2}, y^{\prime \prime }\left (t \right ) = {\mathrm e}^{-2 x \left (t \right )} \sin \left (y \left (t \right )\right ) \cos \left (y \left (t \right )\right )-\frac {\sin \left (y \left (t \right )\right )}{\cos \left (y \left (t \right )\right )^{3}}\right ] \]

13148

\[ {} \left [x^{\prime \prime }\left (t \right ) = \frac {k x \left (t \right )}{\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{{3}/{2}}}, y^{\prime \prime }\left (t \right ) = \frac {k y \left (t \right )}{\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{{3}/{2}}}\right ] \]

13151

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) \left (y \left (t \right )-z \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (-x \left (t \right )+z \left (t \right )\right ), z^{\prime }\left (t \right ) = z \left (t \right ) \left (x \left (t \right )-y \left (t \right )\right )] \]

13152

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right )+z^{\prime }\left (t \right ) = y \left (t \right ) z \left (t \right ), x^{\prime }\left (t \right )+z^{\prime }\left (t \right ) = x \left (t \right ) z \left (t \right )] \]