44.27.3 problem 3(a)

Internal problem ID [9470]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 10. Systems of First-Order Equations. Section 10.2 Linear Systems. Page 380
Problem number : 3(a)
Date solved : Tuesday, September 30, 2025 at 06:19:13 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )+2 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=3 x \left (t \right )+2 y \left (t \right ) \end{align*}
Maple. Time used: 0.097 (sec). Leaf size: 35
ode:=[diff(x(t),t) = x(t)+2*y(t), diff(y(t),t) = 3*x(t)+2*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{-t}+c_2 \,{\mathrm e}^{4 t} \\ y \left (t \right ) &= -c_1 \,{\mathrm e}^{-t}+\frac {3 c_2 \,{\mathrm e}^{4 t}}{2} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 74
ode={D[x[t],t]==x[t]+2*y[t],D[y[t],t]==3*x[t]+2*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{5} e^{-t} \left (c_1 \left (2 e^{5 t}+3\right )+2 c_2 \left (e^{5 t}-1\right )\right )\\ y(t)&\to \frac {1}{5} e^{-t} \left (3 c_1 \left (e^{5 t}-1\right )+c_2 \left (3 e^{5 t}+2\right )\right ) \end{align*}
Sympy. Time used: 0.048 (sec). Leaf size: 31
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-x(t) - 2*y(t) + Derivative(x(t), t),0),Eq(-3*x(t) - 2*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{1} e^{- t} + \frac {2 C_{2} e^{4 t}}{3}, \ y{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{4 t}\right ] \]