Internal
problem
ID
[8907]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
2.
Linear
equations
with
constant
coefficients.
Page
52
Problem
number
:
3(a)
Date
solved
:
Tuesday, September 30, 2025 at 05:59:57 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+y(x) = 0; ic:=[y(0) = 1, y(1/2*Pi) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==0; ic={y[0]==1,y[Pi/2]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 1, y(pi/2): 2} dsolve(ode,func=y(x),ics=ics)