| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \left (2 x -1\right ) \left (y-1\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x} \left (x^{4} y^{2}+4 y^{2} x^{3}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{4} x^{3}+x +\left (y^{3} x^{4}+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x^{2}+2 y+\left (2 y+2 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{4} x^{3}+2 x +\left (y^{3} x^{4}+3 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+y^{2}+2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {2 y}{x} = -\frac {2 x y}{x^{2}+2 x^{2} y+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }-\frac {3 y}{x} = \frac {2 x^{4} \left (4 x^{3}-3 y\right )}{3 x^{5}+3 x^{3}+2 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+2 x y = -\frac {{\mathrm e}^{-x^{2}} \left (3 x +2 y \,{\mathrm e}^{x^{2}}\right )}{2 x +3 y \,{\mathrm e}^{x^{2}}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+\left (2 x +\frac {1}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y^{2}+x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y+2 x^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{3}+3 y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 x y+2 y+5+2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+x +2 y+1+y^{\prime } \left (1+x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 x y^{2}+2 y+\left (12 x^{2} y+6 x +3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+\left (x y^{2}+6 x y+\frac {1}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 12 x^{3} y+24 x^{2} y^{2}+\left (9 x^{4}+32 x^{3} y+4 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y+4 x y+2 y+\left (x^{2}+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+\left (x^{4}-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x \right ) \cos \left (y\right )+\left (\sin \left (x \right ) \cos \left (y\right )-\sin \left (x \right ) \sin \left (y\right )+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+y^{2}+\left (2 x y+x^{2}-2 x^{2} y^{2}-2 x y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \sin \left (y\right )+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a y+b x y+\left (c x +d x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y^{3}-y^{2}+y+\left (-x y+2 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+3 \left (x^{2}+x^{2} y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a \cos \left (x \right ) y-\sin \left (x \right ) y^{2}+\left (b \cos \left (x \right ) y-x \sin \left (x \right ) y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{4} x^{4}+x^{5} y^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (x \cos \left (x \right )+2 \sin \left (x \right )\right )+x \left (1+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{3} x^{4}+y+\left (x^{5} y^{2}-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x y+2 y^{2}+y+\left (x^{2}+2 x y+x +2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 12 x y+6 y^{3}+\left (9 x^{2}+10 x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x^{2} y^{2}+2 y+2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-7 y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (\sin \left (x \right )+x \cos \left (x \right )\right ) y^{\prime }+\left (2 x \cos \left (x \right )+3 \sin \left (x \right )\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\left (6 x -8\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-4\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (-2+2 x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {4}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 7 x^{{3}/{2}} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \left (1+4 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 8 \,{\mathrm e}^{-x \left (x +2\right )}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -6 x -4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x \left (x -1\right ) y^{\prime }+\left (x^{2}-2 x +2\right ) y = x^{3} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y = x^{2} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-2 x \right ) y^{\prime \prime }+2 y^{\prime }+\left (2 x -3\right ) y = \left (4 x^{2}-4 x +1\right ) {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 4 x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }+\left (1+4 x \right ) y^{\prime }+\left (2 x +1\right ) y = 3 \sqrt {x}\, {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = -{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = 4 x^{{5}/{2}} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 4 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \ln \left (x \right )^{2} y^{\prime \prime }-2 x \ln \left (x \right ) y^{\prime }+\left (2+\ln \left (x \right )\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x y^{\prime \prime }+2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-\left (1+4 x \right ) y^{\prime }+\left (4 x +2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (\sin \left (x \right )+x \cos \left (x \right )\right ) y^{\prime }+\left (2 x \cos \left (x \right )+3 \sin \left (x \right )\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x +1\right ) x y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (-2+2 x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-\left (1+4 x \right ) y^{\prime }+\left (4 x +2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 4 x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+x \right )^{2} y^{\prime \prime }-2 y^{\prime } \left (1+x \right )-\left (x^{2}+2 x -1\right ) y = \left (1+x \right )^{3} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-4\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = x +2
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y^{2}+k^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{2}-3 y+2 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{2}+5 y-6 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{2}+8 y+7 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{2}+14 y+50 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y^{\prime }+6 y^{2}-y-1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 36 y^{\prime }+36 y^{2}-12 y+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \left (y^{\prime }+y^{2}\right )-x \left (x +2\right ) y+x +2 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{2}+4 x y+4 x^{2}+2 = 0
\]
|
✓ |
✓ |
✓ |
|