6.239 Problems 23801 to 23900

Table 6.477: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

23801

\[ {} x^{3} y^{\prime \prime }-\left (1+x \right ) y = 0 \]

23802

\[ {} \left (x +3\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

23803

\[ {} \left (x +3\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

23804

\[ {} y^{\prime \prime }-2 x y^{\prime }+4 y = 0 \]

23805

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

23806

\[ {} y^{\prime \prime }-2 \left (x +2\right ) y^{\prime }+4 y = 0 \]

23807

\[ {} \left (-x^{2}+4 x -3\right ) y^{\prime \prime }-2 \left (x -2\right ) y^{\prime }+6 y = 0 \]

23808

\[ {} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

23809

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

23810

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23811

\[ {} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = 0 \]

23812

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23813

\[ {} \left (x^{2}+4 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = 0 \]

23814

\[ {} y^{\prime \prime }-x y = 0 \]

23815

\[ {} y^{\prime \prime }-x y = 0 \]

23816

\[ {} \left (x^{2}+2\right ) y^{\prime \prime }-3 y^{\prime }+\left (x -1\right ) y = 0 \]

23817

\[ {} x y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0 \]

23818

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

23819

\[ {} y^{\prime \prime }-2 x y^{\prime }+4 y = 0 \]

23820

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

23821

\[ {} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

23822

\[ {} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = 0 \]

23823

\[ {} y^{\prime \prime }+y^{\prime } \left (1+x \right )-y = 0 \]

23824

\[ {} y^{\prime \prime }+y^{\prime } \left (1+x \right )-y = 0 \]

23825

\[ {} x y^{\prime \prime }-2 y^{\prime }+x y = 0 \]

23826

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23827

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

23828

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0 \]

23829

\[ {} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

23830

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

23831

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0 \]

23832

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23833

\[ {} y^{\prime \prime }-2 x y^{\prime }+4 y = 0 \]

23834

\[ {} 6 y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

23835

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

23836

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-4\right ) y = 0 \]

23837

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

23838

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

23839

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

23840

\[ {} x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+2 y = 0 \]

23841

\[ {} x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+\frac {y}{16} = 0 \]

23842

\[ {} x^{2} y^{\prime \prime }+3 x \left (1-x \right ) y^{\prime }+y = 0 \]

23843

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0 \]

23844

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

23845

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

23846

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-p^{2}+x^{2}\right ) y = 0 \]

23847

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+3 y = 0 \]

23848

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{16}\right ) y = 0 \]

23849

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+y = 0 \]

23850

\[ {} x^{2} y^{\prime \prime }-\left (x^{3}+x^{2}+x \right ) y^{\prime }+\left (1+4 x \right ) y = 0 \]

23851

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

23852

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {2}{3}-3 x \right ) y^{\prime }-y = 0 \]

23853

\[ {} \left (x -1\right ) y^{\prime \prime }+\left (2-x \right ) y^{\prime }+y = 0 \]

23854

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

23855

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-\left (x +3\right ) y = 0 \]

23856

\[ {} \left (x -1\right )^{2} y^{\prime \prime }-\left (1+x \right ) y = 0 \]

23857

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+y = 0 \]

23858

\[ {} 2 \left (x +3\right )^{2} y^{\prime \prime }-\left (x^{2}+5 x +6\right ) y^{\prime }-y = 0 \]

23859

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

23860

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

23861

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

23862

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

23863

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0 \]

23864

\[ {} x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+3 y = 0 \]

23865

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

23866

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{4}-4 x \right ) y^{\prime }-2 y = 0 \]

23867

\[ {} \left (x -1\right ) \left (x +2\right ) y^{\prime \prime }+\left (x +\frac {1}{2}\right ) y^{\prime }+2 y = 0 \]

23868

\[ {} \left (x^{2}-\frac {1}{4}\right ) y^{\prime \prime }+2 y^{\prime }-6 y = 0 \]

23869

\[ {} y^{\prime \prime }+9 y = 0 \]

23870

\[ {} y^{\prime \prime }+9 y = 0 \]

23871

\[ {} y^{\prime \prime }+9 y = 0 \]

23872

\[ {} y^{\prime \prime }+9 y = 0 \]

23873

\[ {} y^{\prime \prime }+9 y = 0 \]

23874

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \]

23875

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 0 \]

23876

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 0 \]

23877

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = \ln \left (x \right ) \]

23878

\[ {} y^{\prime \prime } = 0 \]

23879

\[ {} -\frac {u^{\prime \prime }}{2} = x \]

23880

\[ {} -\frac {u^{\prime \prime }}{2} = x \]

23881

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

23882

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

23883

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

23884

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

23885

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

23886

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

23887

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

23888

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )] \]

23889

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )] \]

23890

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

23891

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )^{2}-x \left (t \right )^{2}, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )] \]

23892

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -\sin \left (x \left (t \right )\right )] \]

23893

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -4 \sin \left (x \left (t \right )\right )] \]

23894

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+x \left (t \right ) y \left (t \right )] \]

23895

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )] \]

23896

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = \sin \left (x_{1} \left (t \right )\right )] \]

23897

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )] \]

23898

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{1} \left (t \right )^{3}] \]

23899

\[ {} [x^{\prime }\left (t \right ) = a x \left (t \right )+b y \left (t \right ), y^{\prime }\left (t \right ) = c x \left (t \right )+d y \left (t \right )] \]

23900

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]