| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}+5 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }-5 y = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {s^{\prime \prime \prime }}^{2}+{s^{\prime \prime }}^{3} = s-3 t
\]
|
✗ |
✗ |
✗ |
|
| \[
{} r^{\prime } = \sqrt {r t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-3 x = \sin \left (y \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +y+\left (x -3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y = \sin \left (y^{\prime \prime }\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }-10 y = 6 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime } = -9 s
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3} = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 2 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\left (2 x -3 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = 4 \,{\mathrm e}^{-t}-2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime } = t^{2}-4 t +8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime } = 9 \sqrt {u}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 12 x \left (4-x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {4}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 1-\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \sqrt {2 x +1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3-x}{y+5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = -24 \cos \left (\frac {\pi x}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sec \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y \tan \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x +y}{y-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{p}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\lambda y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y^{\prime }-2 x \right ) \left (y^{\prime }-3 x^{2}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {| y^{\prime }|}+1 = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 1+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {| y^{\prime }|}+{| y|} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 3 x +2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}+y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}+y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime }+x y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x -2 y}{y-2 x}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}-y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \csc \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{\sqrt {x^{2}+4 y^{2}-4}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}+4 y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y-x}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x {y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\left (\sqrt {x y+1}-1\right )^{2}}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {x}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x \left (1+y^{2}\right )+y \left (x^{2}+2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+{\mathrm e}^{-3 x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x y^{2}+x}{4 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \sqrt {1+y^{2}} = y y^{\prime } \sqrt {x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y \cos \left (x \right )+3 y^{\prime } \sin \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 8 x y+3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime }+5 i = 10
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\left (x^{3}+y^{2} x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {3 x +x y^{2}}{2 y+x^{2} y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\left (y-1\right ) \left (3+y\right )}{\left (y-2\right ) \left (x +3\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = \frac {\sin \left (t \right )+{\mathrm e}^{r} \sin \left (t \right )}{3 \,{\mathrm e}^{r}+{\mathrm e}^{r} \cos \left (2 t \right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = \frac {\sin \left (t \right )+{\mathrm e}^{r} \sin \left (t \right )}{3 \,{\mathrm e}^{r}+{\mathrm e}^{r} \cos \left (2 t \right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} {\mathrm e}^{2 x^{2}+3 y^{2}}-y^{3} {\mathrm e}^{-x^{2}-2 y^{2}} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} U^{\prime } = \frac {U+1}{\sqrt {s}+\sqrt {s U}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {4 y^{2}-x^{4}}{4 x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y \sin \left (x y\right )+x \sin \left (x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1+\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x}+\frac {y^{2}}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = 2 x +3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}-y^{2}-2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +2+\left (y+2 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y+\cos \left (\frac {y}{x}\right )^{2}}{x}
\]
|
✓ |
✓ |
✗ |
|