6.225 Problems 22401 to 22500

Table 6.449: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

22401

\[ {} y^{\prime \prime }+y = 0 \]

22402

\[ {} y^{\prime \prime }+y = 0 \]

22403

\[ {} y^{\prime \prime }+y = 0 \]

22404

\[ {} y^{\prime \prime }+y = x \]

22405

\[ {} y^{\prime \prime }+y = x \]

22406

\[ {} y^{\prime } = x^{2}+5 y \]

22407

\[ {} y^{\prime \prime }-4 y^{\prime }-5 y = {\mathrm e}^{3 x} \]

22408

\[ {} {s^{\prime \prime \prime }}^{2}+{s^{\prime \prime }}^{3} = s-3 t \]

22409

\[ {} r^{\prime } = \sqrt {r t} \]

22410

\[ {} x^{\prime \prime }-3 x = \sin \left (y \right ) \]

22411

\[ {} 2 x +y+\left (x -3\right ) y^{\prime } = 0 \]

22412

\[ {} y^{\prime \prime }+x y = \sin \left (y^{\prime \prime }\right ) \]

22413

\[ {} y^{\prime }+y = x \]

22414

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = 6 \,{\mathrm e}^{x} \]

22415

\[ {} s^{\prime \prime } = -9 s \]

22416

\[ {} {y^{\prime }}^{3} = y \]

22417

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

22418

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 2 x^{2} \]

22419

\[ {} y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

22420

\[ {} y^{\prime } = 3 \sin \left (x \right ) \]

22421

\[ {} x^{\prime } = 4 \,{\mathrm e}^{-t}-2 \]

22422

\[ {} x^{\prime \prime } = t^{2}-4 t +8 \]

22423

\[ {} s^{\prime } = 9 \sqrt {u} \]

22424

\[ {} y^{\prime \prime } = 12 x \left (4-x \right ) \]

22425

\[ {} y^{\prime } = -\frac {4}{x^{2}} \]

22426

\[ {} y^{\prime \prime } = 1-\cos \left (x \right ) \]

22427

\[ {} y^{\prime \prime } = \sqrt {2 x +1} \]

22428

\[ {} y^{\prime }-2 y = 0 \]

22429

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

22430

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

22431

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

22432

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

22433

\[ {} y^{\prime \prime }+y^{2} = 0 \]

22434

\[ {} y^{\prime } = 2 x y+1 \]

22435

\[ {} y^{\prime } = \frac {3-x}{y+5} \]

22436

\[ {} y^{\prime \prime \prime } = -24 \cos \left (\frac {\pi x}{2}\right ) \]

22437

\[ {} x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

22438

\[ {} y^{\prime } = y \]

22439

\[ {} y^{\prime } = {\mathrm e}^{y} \]

22440

\[ {} y^{\prime } = \sec \left (y\right ) \]

22441

\[ {} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime } = 0 \]

22442

\[ {} y^{\prime }+y \tan \left (x \right ) = 0 \]

22443

\[ {} -y+y^{\prime \prime } = 4 x \]

22444

\[ {} y^{\prime } = \frac {x +y}{y-x} \]

22445

\[ {} y^{\prime \prime \prime } = 0 \]

22446

\[ {} 2 y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

22447

\[ {} y^{\prime \prime }+y = {\mathrm e}^{-x^{2}} \]

22448

\[ {} y^{\prime } = y^{3} \]

22449

\[ {} y^{\prime } = y^{p} \]

22450

\[ {} y^{\prime \prime }+\lambda y = 0 \]

22451

\[ {} \left (y^{\prime }-2 x \right ) \left (y^{\prime }-3 x^{2}\right ) = 0 \]

22452

\[ {} {| y^{\prime }|}+1 = 0 \]

22453

\[ {} 1+{y^{\prime }}^{2} = 0 \]

22454

\[ {} {| y^{\prime }|}+{| y|} = 0 \]

22455

\[ {} y^{\prime } = 3 x +2 y \]

22456

\[ {} y^{\prime } = \frac {1}{x^{2}+y^{2}} \]

22457

\[ {} y^{\prime } = \frac {1}{x^{2}+y^{2}} \]

22458

\[ {} y^{\prime }+x y = x^{2} \]

22459

\[ {} y^{\prime } = \frac {x -2 y}{y-2 x} \]

22460

\[ {} y^{\prime } = \frac {1}{x^{2}-y^{2}} \]

22461

\[ {} y^{\prime } = x^{2}+y^{2} \]

22462

\[ {} y^{\prime } = \sqrt {x y} \]

22463

\[ {} y^{\prime } = y \csc \left (x \right ) \]

22464

\[ {} y^{\prime } = \frac {1}{\sqrt {x^{2}+4 y^{2}-4}} \]

22465

\[ {} y^{\prime } = \sqrt {y} \]

22466

\[ {} y^{\prime } = 2 x -y \]

22467

\[ {} y^{\prime } = 2 x \]

22468

\[ {} y^{\prime } = \frac {y}{x} \]

22469

\[ {} y^{\prime } = x +y \]

22470

\[ {} y^{\prime } = \frac {1}{x^{2}+4 y^{2}} \]

22471

\[ {} y^{\prime } = \sqrt {y-x}+1 \]

22472

\[ {} y^{\prime \prime }+x {y^{\prime }}^{2} = 1 \]

22473

\[ {} x y^{\prime \prime }+y^{\prime }+x y = 0 \]

22474

\[ {} y^{\prime } = \frac {\left (\sqrt {x y+1}-1\right )^{2}}{x^{2}} \]

22475

\[ {} y^{\prime } = -\frac {x}{y} \]

22476

\[ {} y^{\prime } = -\frac {y}{x} \]

22477

\[ {} 3 x \left (1+y^{2}\right )+y \left (x^{2}+2\right ) y^{\prime } = 0 \]

22478

\[ {} 2 y+{\mathrm e}^{-3 x} y^{\prime } = 0 \]

22479

\[ {} y^{\prime } = \frac {x y^{2}+x}{4 y} \]

22480

\[ {} x y^{\prime } = 1+y^{2} \]

22481

\[ {} \sin \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

22482

\[ {} x \sqrt {1+y^{2}} = y y^{\prime } \sqrt {x^{2}+1} \]

22483

\[ {} 2 y \cos \left (x \right )+3 y^{\prime } \sin \left (x \right ) = 0 \]

22484

\[ {} y^{\prime } = 8 x y+3 y \]

22485

\[ {} i^{\prime }+5 i = 10 \]

22486

\[ {} y+\left (x^{3}+y^{2} x^{3}\right ) y^{\prime } = 0 \]

22487

\[ {} y^{\prime } = -\frac {3 x +x y^{2}}{2 y+x^{2} y} \]

22488

\[ {} y^{\prime } = \frac {\left (y-1\right ) \left (3+y\right )}{\left (y-2\right ) \left (x +3\right )} \]

22489

\[ {} r^{\prime } = \frac {\sin \left (t \right )+{\mathrm e}^{r} \sin \left (t \right )}{3 \,{\mathrm e}^{r}+{\mathrm e}^{r} \cos \left (2 t \right )} \]

22490

\[ {} r^{\prime } = \frac {\sin \left (t \right )+{\mathrm e}^{r} \sin \left (t \right )}{3 \,{\mathrm e}^{r}+{\mathrm e}^{r} \cos \left (2 t \right )} \]

22491

\[ {} x^{3} {\mathrm e}^{2 x^{2}+3 y^{2}}-y^{3} {\mathrm e}^{-x^{2}-2 y^{2}} y^{\prime } = 0 \]

22492

\[ {} U^{\prime } = \frac {U+1}{\sqrt {s}+\sqrt {s U}} \]

22493

\[ {} y^{\prime } = \frac {4 y^{2}-x^{4}}{4 x y} \]

22494

\[ {} x^{2}+y \sin \left (x y\right )+x \sin \left (x y\right ) y^{\prime } = 0 \]

22495

\[ {} y^{\prime } = 1+\frac {y}{x} \]

22496

\[ {} y^{\prime } = \frac {y}{x}+\frac {y^{2}}{x^{2}} \]

22497

\[ {} x y^{\prime } = 2 x +3 y \]

22498

\[ {} x^{2}-y^{2}-2 y y^{\prime } x = 0 \]

22499

\[ {} x +2+\left (y+2 x \right ) y^{\prime } = 0 \]

22500

\[ {} y^{\prime } = \frac {y+\cos \left (\frac {y}{x}\right )^{2}}{x} \]